Issue 48, 2018

Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies

Abstract

Within nanomedicine, liposomes are investigated for their ability to deliver drug cargoes specifically into subcellular compartments of target cells. Such studies are often based on flow cytometry or microscopy, where researchers rely on fluorescently labeled lipids (FLLs) incorporated into the liposomal membrane to determine the localization of the liposomes within cells. These studies assume that the FLLs stay embedded in the liposomal membrane throughout the duration of the experiment. Here, we used size exclusion chromatography (SEC) to investigate the validity of this assumption by quantitatively determining the propensity of various widely used FLLs to dissociate from liposomes during incubation in human plasma. For certain commonly used off-the-shelf FLLs, up to 75% of the dye dissociated from the liposomes, while others dissociated less than 10%. To investigate the implications of this finding, we measured the peripheral blood leukocyte uptake of liposomes formulated with different FLLs using flow cytometry, and observed a significant difference in uptake correlating with the FLL's dissociation tendencies. Consequently, the choice of FLL can dramatically influence the conclusions drawn from liposome uptake and localization studies due to uptake of dissociated FLLs. The varying dissociation propensities for the FLLs were not reflected when incubating in buffer, showing that non-biological environments are unsuitable to mimic liposomal stability in a drug delivery context. Overall, our findings suggest that it is crucial for researchers to evaluate the stability of their FLL-labeled liposomes in biological environments, and the simplicity of the SEC assay put forward here makes it very applicable for the purpose.

Graphical abstract: Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies

Supplementary files

Article information

Article type
Communication
Submitted
24 Sep 2018
Accepted
20 Nov 2018
First published
21 Nov 2018

Nanoscale, 2018,10, 22720-22724

Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies

R. Münter, K. Kristensen, D. Pedersbæk, J. B. Larsen, J. B. Simonsen and T. L. Andresen, Nanoscale, 2018, 10, 22720 DOI: 10.1039/C8NR07755J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements