Issue 6, 2018

A strategy for the molecular design of aggregation-induced emission units further modified by substituents

Abstract

Aggregation-induced emission (AIE) molecules with strong luminescence in aggregated states have attracted persistent attention in recent years. The development of new structures of AIE units and their further modification with functional groups to satisfy more specialized applications are important research fields. However, studies on the molecular design associated with the functional modification of AIE units have not been reported to date. Herein, we designed and synthesized 13 aryl-substituted pyrrolo[3,2-b]pyrrole derivatives. Among these compounds, DPP-1CN, DPP-1MF, DPP-1MF-2Me, and DPP-1MF-2IP with electron-withdrawing groups on the phenyl groups at the 1,4-positions and electron-donating groups on the phenyl groups at the 2,5-positions of pyrrolo[3,2-b]pyrrole core showed AIE characteristics, whereas others showed aggregation-caused quenching (ACQ) characteristics. The absorption and photoluminescence (PL) emission spectra indicated that the AIE compounds exhibited weak intramolecular charge transfer (ICT) absorption and possessed large Stokes shifts, whereas the ACQ derivatives showed obvious ICT absorption. Density functional theory (DFT) calculation results suggested that the HOMOs and LUMOs of the four AIE compounds were spatially isolated that weakened the twisted intramolecular charge transfer (TICT) effect and minimized fluorescence reabsorption in the aggregated states. Single-crystal analysis also confirmed that AIE properties could be realized by the suppression of both the TICT effect and the close π⋯π interactions in the aggregated state. These results are beneficial for understanding the relationship between molecular structure and AIE properties. The resulting structural information provides the basis for the future rationalization of functional modification of the AIE materials.

Graphical abstract: A strategy for the molecular design of aggregation-induced emission units further modified by substituents

Supplementary files

Article information

Article type
Research Article
Submitted
08 Mar 2018
Accepted
09 Apr 2018
First published
10 Apr 2018

Mater. Chem. Front., 2018,2, 1175-1183

A strategy for the molecular design of aggregation-induced emission units further modified by substituents

Z. Peng, Y. Ji, Z. Huang, B. Tong, J. Shi and Y. Dong, Mater. Chem. Front., 2018, 2, 1175 DOI: 10.1039/C8QM00096D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements