Issue 34, 2018

Microliter viscometry using a bright-field microscope: η-DDM

Abstract

The rheological properties of a medium can be inferred from the Brownian motion of colloidal tracer particles using the microrheology procedure. The tracer motion can be characterized by the mean-squared displacement (MSD). It can be calculated from the intermediate scattering function determined by Differential Dynamic Microscopy (DDM). Here we show that DDM together with the empirical Cox–Merz rule is particularly suited to measure the steady-shear viscosity, i.e. the viscosity towards zero frequency, due to its ability to provide reliable information on long time and length scales and hence small frequencies. This method, η-DDM, is tested and illustrated using three different systems: Newtonian fluids (glycerol–water mixtures), colloidal suspensions (protein samples) and a viscoelastic polymer solution (aqueous poly(ethylene oxide) solution). These tests show that common lab equipment, namely a bright-field optical microscope, can be used as a convenient and reliable microliter viscometer. Because η-DDM requires much smaller sample volumes than classical rheometry, only a few microliters, it is particularly useful for biological and soft matter systems.

Graphical abstract: Microliter viscometry using a bright-field microscope: η-DDM

Article information

Article type
Paper
Submitted
16 Apr 2018
Accepted
30 Jul 2018
First published
09 Aug 2018

Soft Matter, 2018,14, 7016-7025

Microliter viscometry using a bright-field microscope: η-DDM

M. A. Escobedo-Sánchez, J. P. Segovia-Gutiérrez, A. B. Zuccolotto-Bernez, J. Hansen, C. C. Marciniak, K. Sachowsky, F. Platten and S. U. Egelhaaf, Soft Matter, 2018, 14, 7016 DOI: 10.1039/C8SM00784E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements