Issue 10, 2018

Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells

Abstract

Two π-conjugated small molecules based on the multifused rigid ladder-type backbone of ITCPTC are employed as the electron transporting materials in inverted perovskite solar cells. The two compounds are distinguished by the side chain thiophene and selenophene groups. Their energy levels match well with perovskite materials. Results demonstrate that the thiophene side chain endows ITCPTC-Th with smoother morphology, higher electron mobility, and more efficient electron extraction and electron transporting properties. Inverted PSCs with the ITCPTC-Th electron transporting material (ETL) show a high efficiency of 17.11%, which is higher than the efficiency of 16.12% obtained from the ITCPTC-Se-based PSCs. Notably, the performances of the ITCPTC-based ETLs are slightly higher than those of PCBM (with the highest PCE of 15.97%) under identical conditions. In addition, the two compounds also show excellent performance when applied as the interlayer between perovskite and the C60 electron transporting layer. High efficiencies approaching 19% are obtained in devices containing the ITCPTC interlayers, further confirming their decent electron transporting properties. The ITCPTC compounds thus have great potential as efficient alternatives for the expensive PCBM ETL in inverted perovskite solar cells.

Graphical abstract: Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
16 Jan 2018
Accepted
08 Feb 2018
First published
14 Feb 2018

J. Mater. Chem. A, 2018,6, 4443-4448

Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells

F. Wu, W. Gao, H. Yu, L. Zhu, L. Li and C. Yang, J. Mater. Chem. A, 2018, 6, 4443 DOI: 10.1039/C8TA00492G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements