Issue 23, 2018

Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting

Abstract

Photoelectrochemical (PEC) water splitting is a promising method for the conversion and storage of solar energy. A combination of catalysts with photoelectrodes is generally required for the development of active photoanodes in PEC devices. In this work, we present two BiVO4 photoanodes modified with cobalt salophen (Co(salophen)) complexes for PEC water oxidation. The resulting photoanodes show significantly enhanced PEC performance. Under simulated sunlight illumination (AM 1.5G, 100 mW cm−2), high photocurrents of 3.89 mA cm−2 and 4.27 mA cm−2 were obtained for Co1/BiVO4 and Co2/BiVO4, respectively at 1.23 V (vs. the reversible hydrogen electrode (RHE)) in a neutral solution, an almost three-fold enhancement over that of the unmodified BiVO4. Intensity-modulated photocurrent spectroscopy (IMPS) analysis shows that the Co(salophen) complexes not only accelerate the water oxidation reaction but also reduce the surface recombination. The half-cell solar energy conversion efficiencies for Co1/BiVO4 and Co2/BiVO4 were 1.09% and 1.18% at 0.7 V, respectively. Due to their hydrophobic nature, the Co(salophen) complexes can bind strongly to the surface of BiVO4. When the Co2 complex featuring four hydrophobic tert-butyl groups in a salophen ligand was anchored to BiVO4, an extremely stable photocurrent of more than 3.5 mA cm−2 at 1.23 V vs. RHE is sustained for at least 3 h without decay. Such a stable and robust photoanode based on a molecular WOC surpasses those attained by most of the state-of-the-art heterogeneous catalysts.

Graphical abstract: Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2018
Accepted
01 May 2018
First published
02 May 2018

J. Mater. Chem. A, 2018,6, 10761-10768

Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting

Y. Liu, Y. Jiang, F. Li, F. Yu, W. Jiang and L. Xia, J. Mater. Chem. A, 2018, 6, 10761 DOI: 10.1039/C8TA01304G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements