Issue 43, 2018

Sequential deposition route to efficient Sb2S3 solar cells

Abstract

We report a facile two-step sequential deposition method to prepare Sb2S3 thin films, where antimony acetate and thiourea are utilized as antimony and sulfur sources, respectively. The sequential deposition of two precursor materials followed by swift annealing at mild temperature leads to high-quality Sb2S3 films. The detailed reaction mechanism is revealed on the basis of structural and compositional analyses. By optimizing the concentration of thiourea and annealing temperature, uniform and flat Sb2S3 thin films are obtained with either sulfur-deficiency or sulfur richness. Finally, a planar heterojunction solar cell based on the as-prepared Sb2S3 film delivers a high power conversion efficiency of 5.69%, which is a top value for planar heterojunction Sb2S3 solar cells fabricated by a solution approach. This research provides a convenient and low-cost approach for the deposition of Sb2S3 films for efficient solar cell applications.

Graphical abstract: Sequential deposition route to efficient Sb2S3 solar cells

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2018
Accepted
08 Oct 2018
First published
10 Oct 2018

J. Mater. Chem. A, 2018,6, 21320-21326

Sequential deposition route to efficient Sb2S3 solar cells

L. Zhang, C. Wu, W. Liu, S. Yang, M. Wang, T. Chen and C. Zhu, J. Mater. Chem. A, 2018, 6, 21320 DOI: 10.1039/C8TA08296K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements