Issue 21, 2018

2D magnetic titanium carbide MXene for cancer theranostics

Abstract

Fast progress of two-dimensional (2D) materials has catalyzed the emergence of diverse new 2D nanosystems for versatile applications, among which 2D MXenes have attracted broad interest but their single functionality significantly restricts their extensive applications, especially in nanomedicine. Herein we report, for the first time, on the construction of superparamagnetic 2D Ti3C2 MXenes for highly efficient cancer theranostics, which is based on the surface chemistry of specific MXenes for the in situ growth of superparamagnetic Fe3O4 nanocrystals onto the surface of Ti3C2 MXenes. These magnetic Ti3C2–IONPs MXene composites exhibit a high T2 relaxivity of 394.2 mM−1 s−1 and efficient contrast-enhanced magnetic resonance imaging of tumors, providing the potential for therapeutic guidance. Importantly, these superparamagnetic MXenes have shown high photothermal conversion efficiency (48.6%) to guarantee the efficient photothermal killing of cancer cells and ablation of tumor tissues, which has been systematically demonstrated both in vitro and in vivo. The high biocompatibility of these elaborately designed magnetic Ti3C2-based MXene composites guarantees their further potential clinical translation. This report paves a new way for the functionalization of MXene-based 2D nanosheets for broadening their novel applications based on the unique surface chemistry of MXenes, especially in theranostic nanomedicine.

Graphical abstract: 2D magnetic titanium carbide MXene for cancer theranostics

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2018
Accepted
20 Apr 2018
First published
20 Apr 2018

J. Mater. Chem. B, 2018,6, 3541-3548

2D magnetic titanium carbide MXene for cancer theranostics

Z. Liu, M. Zhao, H. Lin, C. Dai, C. Ren, S. Zhang, W. Peng and Y. Chen, J. Mater. Chem. B, 2018, 6, 3541 DOI: 10.1039/C8TB00754C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements