Issue 38, 2018

High-temperature Dirac half-metal PdCl3: a promising candidate for realizing quantum anomalous Hall effect

Abstract

The prospect of a Dirac half-metal (DHM) and the realization of the quantum anomalous Hall effect (QAHE) on a honeycomb lattice without external fields are a great challenge in experiments due to the structural complexities of two-dimensional (2D) crystals. Here, based on density-functional theory calculations, we propose an ideal candidate material for realizing these exotic quantum states in a 2D honeycomb metal–halogen lattice, single-layer PdCl3. We find that the ground state of PdCl3 is a 100% spin-polarized DHM with a ferromagnetic Curie temperature TC = 528 K predicted from Monte Carlo simulations. Upon including spin–orbit coupling (SOC), PdCl3 reveals the QAHE due to the splitting of the manifold of Pd |dxz〉 and |dyz〉 bands near the Fermi level, which is characterized by the nontrivial Chern number (C = −1) and chiral edge states. In particular, the origin of the topological properties of the PdCl3 honeycomb lattice is explained by the tight-binding model. The sensitivity of nontrivial topology to the cooperative effect of the electron correlation of Pd-4d electrons and SOC is demonstrated: when increasing the on-site Coulomb repulsion U, a sizable nontrivial band gap Eg = 68.6 meV is obtained. Additionally, we explore the mechanical and dynamical stability, as well as strain response of PdCl3 for possible epitaxial growth conditions in experiments. The coexistence of a high temperature DHM and the QAHE in PdCl3 presents a promising platform for the emerging area of spintronics devices with dissipationless edge states.

Graphical abstract: High-temperature Dirac half-metal PdCl3: a promising candidate for realizing quantum anomalous Hall effect

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2018
Accepted
23 Aug 2018
First published
29 Aug 2018

J. Mater. Chem. C, 2018,6, 10284-10291

High-temperature Dirac half-metal PdCl3: a promising candidate for realizing quantum anomalous Hall effect

Y. Wang, S. Li, C. Zhang, S. Zhang, W. Ji, P. Li and P. Wang, J. Mater. Chem. C, 2018, 6, 10284 DOI: 10.1039/C8TC02500B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements