Issue 47, 2018

Lanthanide luminescence as a local probe in mixed anionic hydrides – a case study on Eu2+-doped RbMgHxF3−x and KMgHxF3−x

Abstract

In the search for novel mixed anionic hydrides, simple and sensitive detection methods can be useful and local probes lead to a better understanding of the materials. In our present study, we show that 5d–4f lanthanide luminescence can serve as a local sensor to verify the presence of hydride and potentially estimate the hydride content. As a model system, the Eu2+-doped hydride fluoride solid solution series of MMgDxF3−x (MMgHxF3−x) with M = K, Rb is used, which were prepared and characterized by a combined X-ray and neutron diffraction approach. At room temperature, the compounds with M = Rb crystallize in a hexagonal perovskite-type structure and those with M = K crystallize in a normal cubic perovskite structure. Their lattice parameters follow Vegard's law. We also reinvestigated the structure and anion distribution in KMgD2F. Bright yellow emission in RbMgH3:Eu2+ is observed for the first time and for both M, the hydride fluoride compounds show Eu2+ emission energies between those of the pure hydrides and fluorides, which can be used for calibration and fast idendification of the hydride content, especially in the region of low hydride content.

Graphical abstract: Lanthanide luminescence as a local probe in mixed anionic hydrides – a case study on Eu2+-doped RbMgHxF3−x and KMgHxF3−x

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2018
Accepted
08 Nov 2018
First published
09 Nov 2018

J. Mater. Chem. C, 2018,6, 13006-13012

Lanthanide luminescence as a local probe in mixed anionic hydrides – a case study on Eu2+-doped RbMgHxF3−x and KMgHxF3−x

T. Wylezich, S. Welinski, M. Hoelzel, P. Goldner and N. Kunkel, J. Mater. Chem. C, 2018, 6, 13006 DOI: 10.1039/C8TC03881C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements