Issue 46, 2018

Design principle of all-inorganic halide perovskite-related nanocrystals

Abstract

All-inorganic halide perovskite (AIHP)-related (e.g., CsPbBr3, Cs4PbBr6, and CsPb2Br5) nanocrystals have attracted great research interest in the recent three years, owing to their unique optical properties. However, rational structural and compositional control of these nanocrystals is still challenging, particularly using the room temperature saturated recrystallization (RTSR) method. Here, we revealed that the structure and the composition of the nanocrystals fabricated by the RTSR approach are highly dependent not only on the previously thought concentration ratio of PbBr2 and CsBr in N-dimethylformamide (DMF), but the previously neglected absolute concentration and reaction time. This is the reason why pure AIHP-related nanocrystals are usually difficult to prepare using the RTSR method. Through a series of carefully designed experiments, we obtained the evolution trend of the precipitation rate of PbBr2 and CsBr within a wide concentration range in DMF. Based on the understanding of the growth mechanism, we achieved preparation of pure or a mixture of CsPbBr3, Cs4PbBr6, and CsPb2Br5 nanocrystals through either control of the concentration of PbBr2 and CsBr or the reaction time. This study deepens our understanding of the growth mechanism of AIHP-related nanocrystals, paving the way for future engineering of nanocrystals with desired structures and compositions. These structures with desired compositions will definitely have promising applications in optical and optoelectronic devices.

Graphical abstract: Design principle of all-inorganic halide perovskite-related nanocrystals

Supplementary files

Article information

Article type
Communication
Submitted
25 Aug 2018
Accepted
06 Nov 2018
First published
10 Nov 2018

J. Mater. Chem. C, 2018,6, 12484-12492

Design principle of all-inorganic halide perovskite-related nanocrystals

Q. Sun, C. Ni, Y. Yu, S. Attique, S. Wei, Z. Ci, J. Wang and S. Yang, J. Mater. Chem. C, 2018, 6, 12484 DOI: 10.1039/C8TC04254C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements