Issue 46, 2018

An overview of lead-free piezoelectric materials and devices

Abstract

Piezoelectric materials and devices have drawn extensive attention for energy harvesting due to their excellent electromechanical conversion properties. With increasing concerns about environmental problems in traditional lead-based piezoelectric materials, it is imperative to develop lead-free piezoelectric alternatives. This paper is intended to give a brief review on the most recent advances in both inorganic (with an emphasis on piezoelectric ceramics and ZnO nanostructures) and organic (i.e. polyvinylidene difluoride (PVDF) and its copolymers and their composites, and biopolymers) lead-free piezoelectric materials. State-of-the-art piezoelectric devices, namely, nanogenerators, sensors, and transducers, are also introduced with detailed examples. Finally, the challenges and perspectives of lead-free piezoelectric materials and devices are given.

Graphical abstract: An overview of lead-free piezoelectric materials and devices

Article information

Article type
Review Article
Submitted
06 Sep 2018
Accepted
23 Oct 2018
First published
23 Oct 2018

J. Mater. Chem. C, 2018,6, 12446-12467

An overview of lead-free piezoelectric materials and devices

H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma, N. Wang, Z. Wang, Y. Sun, R. Wei and Z. Guo, J. Mater. Chem. C, 2018, 6, 12446 DOI: 10.1039/C8TC04515A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements