Issue 14, 2019

Constructing a fragmentary g-C3N4 framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination

Abstract

Graphitic carbon nitride (denoted as “g-C3N4”), as a graphite-like CN material, is widely used in catalysis. In this paper, a fragmentary g-C3N4 framework with a porous structure and rich nitrogen defects was synthesized for acetylene hydrochlorination, using melamine formaldehyde (MF) resin as an oxygen-containing precursor. The fragmentary g-C3N4 shows a highly efficient activity with acetylene conversion reaching 94.5%, which is 30 times higher than that of pure g-C3N4 prepared by direct pyrolysis of melamine. Both experimental and characterization studies by XRD, XPS and TG-MS reveal that the high activity of the catalyst is mainly derived from the porous structure and rich nitrogen defects, which are attributed to the etching of the g-C3N4 framework by oxygen species in the MF resin. Moreover, density functional theory (DFT) calculations demonstrated that the nitrogen defects in the g-C3N4 framework greatly improved the adsorption of HCl and acetylene, and at the same time significantly reduced the energy barrier from 62.0 to 38.1 kcal mol−1 at the rate-determining step.

Graphical abstract: Constructing a fragmentary g-C3N4 framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2019
Accepted
16 Jun 2019
First published
17 Jun 2019

Catal. Sci. Technol., 2019,9, 3753-3762

Constructing a fragmentary g-C3N4 framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination

X. Qiao, Z. Zhou, X. Liu, C. Zhao, Q. Guan and W. Li, Catal. Sci. Technol., 2019, 9, 3753 DOI: 10.1039/C9CY00927B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements