Issue 23, 2019

Mono- and diylide-substituted phosphines (YPhos): impact of the ligand properties on the catalytic activity in gold(i)-catalysed hydroaminations

Abstract

Understanding the impact of ligand properties on their performance in catalysis is seminal for future ligand design and catalyst improvement. In this work, the influence of the steric and electronic properties on the efficiency of a series of mono- and diylide-functionalized phosphines of type YCNPR2 and (YCN)2PR (with YCN = Ph3P[double bond, length as m-dash]C(CN) and R = Ph, Cy or tBu) on their efficiency in gold(I) catalyzed haydroaminations is studied. The diylidephosphines are particularly electron-rich and sterically encumbering but led to lower conversions than expected based on their donor strength. Systematic analysis of the relation between the donor strength and the catalytic activity revealed a linear correlation for the monoylide-functionalized phosphines. Thus, the most electron-rich phosphine YCNPtBu2 gives rise to the most active catalyst with turnover numbers greater than 5000. In contrast, no correlation was found for the diylide compounds due to steric congestions which overcompensated the beneficial electronic properties. Accordingly, higher temperatures had a stronger impact on the diylide phosphine-based catalysts, thus leading to similar activities of YCNPtBu2 and (YCN)2PCy at 50 °C. Overall, these results provide valuable information for future ligand design and the general impact of steric and electronic properties on the catalytic activity.

Graphical abstract: Mono- and diylide-substituted phosphines (YPhos): impact of the ligand properties on the catalytic activity in gold(i)-catalysed hydroaminations

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2019
Accepted
11 Oct 2019
First published
13 Nov 2019
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2019,9, 6808-6815

Mono- and diylide-substituted phosphines (YPhos): impact of the ligand properties on the catalytic activity in gold(I)-catalysed hydroaminations

C. Schwarz, J. Handelmann, D. M. Baier, A. Ouissa and V. H. Gessner, Catal. Sci. Technol., 2019, 9, 6808 DOI: 10.1039/C9CY01861A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements