Issue 22, 2019

Optical response of magnetically actuated biocompatible membranes

Abstract

Biocompatible suspended magneto-elastic membranes were prepared. They consist of PDMS (polydimethylsiloxane) films, with embedded arrays of micrometric magnetic pillars made with lithography techniques. For visible light wavelengths, our membranes constitute magnetically tunable optical diffraction gratings, in transmission and reflection. The optical response has been quantitatively correlated with membrane structure and deformation, through optical and magneto-mechanical models. In contrast to the case of planar membranes, the diffraction patterns measured in reflection and transmission vary very differently upon magnetic field application. Indeed, the reflected beam is largely affected by the membrane bending, whereas the transmitted beam remains almost unchanged. In reflection, even weak membrane deformation can produce significant changes of the diffraction patterns. This field-controlled optical response may be used in adaptive optical applications, photonic devices, and for biological applications.

Graphical abstract: Optical response of magnetically actuated biocompatible membranes

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2019
Accepted
12 Apr 2019
First published
15 Apr 2019

Nanoscale, 2019,11, 10667-10683

Optical response of magnetically actuated biocompatible membranes

H. Joisten, A. Truong, S. Ponomareva, C. Naud, R. Morel, Y. Hou, I. Joumard, S. Auffret, P. Sabon and B. Dieny, Nanoscale, 2019, 11, 10667 DOI: 10.1039/C9NR00585D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements