Issue 15, 2019

A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source

Abstract

The rapid development of wearable electronics has led to an enormous demand for power sources that are wearable, small-scale, flexible and compatible. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as the liquid electrode and silicone rubber as the triboelectric/encapsulation layer were introduced to design a stretchable PEDOT:PSS liquid electrode-based triboelectric nanogenerator (PL-TENG). The elastic silicone rubber and PEDOT:PSS liquid electrode with a special macromolecular structure endowed PL-TENG with extraordinary flexibility and conductivity simultaneously. Working under the single-electrode mode with different motion frequencies from 0.5 to 2.5 Hz, PL-TENG generated open-circuit voltage of 265 V, short-circuit current of 24.9 μA and short-circuit charge quantity of 85 nC. The output performances still maintained the original values after washing in saline, storing for one month and stretching 10 000 times. At the same time, PL-TENG could also produce stable electrical outputs even when deformed into a variety of shapes including stretching in different directions, bending and twisting. All of these features demonstrated the excellent resistance of PL-TENG to sweat, time and deformation. When attached to a human body, PL-TENG could provide a sufficiently stable power output to drive wearable electronics sustainably.

Graphical abstract: A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2019
Accepted
11 Mar 2019
First published
19 Mar 2019

Nanoscale, 2019,11, 7513-7519

A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source

J. Shi, X. Chen, G. Li, N. Sun, H. Jiang, D. Bao, L. Xie, M. Peng, Y. Liu, Z. Wen and X. Sun, Nanoscale, 2019, 11, 7513 DOI: 10.1039/C9NR01271K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements