Issue 21, 2019

The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes

Abstract

A time-resolved observation of coherent interlayer longitudinal acoustic phonons in thin layers of 2H-MoSe2 is reported. A femtosecond pump–probe technique is used to investigate the evolution of the energy loss of these vibrational modes in a wide selection of MoSe2 flakes with different thicknesses ranging from bilayer up to the bulk limit. By directly analysing the temporal decay of the modes, we can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed on the acoustic decay channels when reducing the dimensionality. For thicker samples, the main acoustic attenuation mechanism is attributed to the scattering of the acoustic modes with thermal phonons. For samples thinner than ∼20 molecular layers, the predominant damping mechanism is ascribed to the effects of surface asperity. Losses intrinsic to the low dimensionality of single or few layer materials impose critical limitations for their use in optomechanical and optoelectronic devices.

Graphical abstract: The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2019
Accepted
23 Apr 2019
First published
21 May 2019

Nanoscale, 2019,11, 10446-10453

The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes

P. Soubelet, A. A. Reynoso, A. Fainstein, K. Nogajewski, M. Potemski, C. Faugeras and A. E. Bruchhausen, Nanoscale, 2019, 11, 10446 DOI: 10.1039/C9NR02447F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements