Issue 29, 2019

Interfacial synthesis of micro-cuboid Ni0.55Co0.45C2O4 solid solution with enhanced electrochemical performance for hybrid supercapacitors

Abstract

Efficient charge and energy storage relies essentially on the development of innovative electrode materials with enhanced electrochemical kinetics. Herein, Ni0.55Co0.45C2O4 solid solution was successfully synthesized by a liquid–liquid interfacial reaction. The observation of the morphologies of Ni0.55Co0.45C2O4 depicts a peculiar micro-cuboid structure composed of nanoparticles in the size range of 13 to 23 nm, benefiting the increase in the contribution of surface-controlled reactions to charge storage processes. The results from X-ray diffraction and thermogravimetric analysis demonstrate the similarity of the crystal structure and thermal decomposition behavior between Ni0.55Co0.45C2O4 and CoC2O4, and indicate that the CoC2O4 lattice plays a role as the fundamental framework in the solid solution instead of NiC2O4. The electrochemical measurements show that Ni0.55Co0.45C2O4 achieves a higher specific capacity of 562 C g−1 at a current density of 1 A g−1 than its counterpart NiC2O4/CoC2O4 hybrids, due to this the alternative arrangement of nickel and cobalt species in the solid solution expedites the diffusion process of active ions during the electrochemical reaction. Depending on the enhancement of the electrochemical stability in the solid solution, Ni0.55Co0.45C2O4 electrodes retain 87.4% of the initial capacity after 4000 cycles. The assembled Ni0.55Co0.45C2O4//AC hybrid supercapacitor attains an energy density of 38.5 W h kg−1 at a power density of 799 W kg−1 with a long cycling life (80% of the initial capacitance after 10 000 cycles). The excellent electrochemical performance suggests that Ni0.55Co0.45C2O4 is a promising candidate electrode material for supercapacitors.

Graphical abstract: Interfacial synthesis of micro-cuboid Ni0.55Co0.45C2O4 solid solution with enhanced electrochemical performance for hybrid supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2019
Accepted
27 Jun 2019
First published
27 Jun 2019

Nanoscale, 2019,11, 13894-13902

Interfacial synthesis of micro-cuboid Ni0.55Co0.45C2O4 solid solution with enhanced electrochemical performance for hybrid supercapacitors

L. Wang, R. Zhang, Y. Jiang, H. Tian, Y. Tan, K. Zhu, Z. Yu and W. Li, Nanoscale, 2019, 11, 13894 DOI: 10.1039/C9NR03790J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements