Issue 23, 2019, Issue in Progress

Optimization of magnetic properties in fast consolidated SrFe12O19 nanocrystallites

Abstract

The magnetic properties of SrFe12O19 nanocrystallites produced by hydrothermal synthesis and consolidated by Spark Plasma Sintering (SPS) were optimized by varying the compaction parameters: sintering time, sintering temperature, uniaxial pressure or pre-compaction in a magnetic field. Highly textured compacts with a high degree of crystallite alignment were produced. Qualitative and quantitative textural information was obtained based on X-ray diffraction pole figure measurements. The optimum sintering conditions, relating the degree of alignment and bulk magnetic properties, were identified based on the resulting magnetic properties. It was found that one must strike a balance between the degree of crystallite alignment for high saturation magnetisation and coercivity (Hc) to gain the highest energy product (BHmax). It was found that the coercive field drops when the crystallite alignment increases. This was particularly pronounced in the case of magnetically pre-aligned powders prior to SPS, where Hc and BHmax decreased as the pellets became increasingly textured. The best BHmax value of 29(4) kJ m−3 was found for the sample sintered at 950 °C for 2 minutes with an applied pressure of 100 MPa for a powder pre-aligned in an applied field of 0.55 T. The results presented here show the potential of SPS consolidation of SrFe12O19 with high relative densities and emphasize the effect of the degree of alignment on the decrease of coercive field and its influence on the magnetic performance.

Graphical abstract: Optimization of magnetic properties in fast consolidated SrFe12O19 nanocrystallites

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2019
Accepted
15 Apr 2019
First published
26 Apr 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 12968-12976

Optimization of magnetic properties in fast consolidated SrFe12O19 nanocrystallites

M. Stingaciu, A. Z. Eikeland, F. H. Gjørup, S. Deledda and M. Christensen, RSC Adv., 2019, 9, 12968 DOI: 10.1039/C9RA02440A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements