Issue 10, 2020

Quinoline-containing diarylethenes: bridging between turn-on fluorescence, RGB switching and room temperature phosphorescence

Abstract

Simple structural modifications using oxidation and methylation of a quinoline-containing diarylethene result in dramatic variation of photophysical properties. Turn-on fluorescence, room temperature phosphorescence (RTP) and red-green-blue (RGB) switching were achieved in three different related compounds. Photoswitchable diarylethenes (DAEs) that exhibit turn-on fluorescence are in high demand for super-resolution microscopy, and the development of purely organic phosphorescent materials in the amorphous state is attractive but challenging. The findings reported here provide a novel toolkit for designing turn-on fluorescence DAEs for super-resolution microscopy and extending the scope of amorphous RTP materials. More importantly, we bridge between these two fundamentally significant photochemical and photophysical phenomena, and reveal structure–property relationships between DAE photochromism and RTP.

Graphical abstract: Quinoline-containing diarylethenes: bridging between turn-on fluorescence, RGB switching and room temperature phosphorescence

Supplementary files

Article information

Article type
Edge Article
Submitted
10 Nov 2019
Accepted
31 Jan 2020
First published
10 Feb 2020
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2020,11, 2729-2734

Quinoline-containing diarylethenes: bridging between turn-on fluorescence, RGB switching and room temperature phosphorescence

Z. Xu, Q. T. Liu, X. Wang, Q. Liu, D. Hean, K. C. Chou and M. O. Wolf, Chem. Sci., 2020, 11, 2729 DOI: 10.1039/C9SC05697A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements