Issue 9, 2020

Self-limiting aggregation of phospholipid vesicles

Abstract

Lipid vesicles are widely used as model systems to study biological membranes. The self-assembly of such vesicles into vesicle pairs provides further opportunity to study interactions between membranes. However, formation of vesicle pairs, while subsequently keeping their colloidal stability intact, is challenging. Here, we report on three strategies that lead to stable finite-sized aggregates of phospholipid vesicles: (i) vesicles containing biotinylated lipids are coupled together with streptavidin, (ii) bridging attraction is exploited by adding cationic polymers (polylysine) to negatively charged vesicles, and (iii) temperature as a control parameter is used for the aggregation of vesicles mixed with a thermo-sensitive surfactant. While each strategy has its own advantages and disadvantages for vesicle pair formation, the latter strategy additionally shows reversible limited aggregation: above the LCST of pNIPAm, vesicle pairs are formed, while below the LCST, single vesicles prevail. Mixing protocols were assessed by dynamic and static light scattering as well as fluorescence correlation spectroscopy to determine under which conditions vesicle pairs dominate the aggregate size distribution. We have strong indications that without subsequent perturbation, the individual vesicles remain intact and no fusion or leakage between vesicles occurs after vesicle pairs have formed.

Graphical abstract: Self-limiting aggregation of phospholipid vesicles

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2019
Accepted
03 Feb 2020
First published
03 Feb 2020
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2020,16, 2379-2389

Self-limiting aggregation of phospholipid vesicles

N. de Lange, F. A. M. Leermakers and J. M. Kleijn, Soft Matter, 2020, 16, 2379 DOI: 10.1039/C9SM01692A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements