Issue 23, 2019

Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density

Abstract

Lead-free dielectric capacitors with high energy storage density and temperature-insensitive performance are pivotal to pulsed power systems. In this work, a pronounced recoverable energy storage density (Wrec) was achieved in AgNbO3-based lead-free antiferroelectric ceramics, by aliovalent A-site Sm mediation. The Sm modification was found to alter the crystal structure and enhance the interaction among the ions by affecting the electronic structure, leading to improved antiferroelectricity. The Sm0.03Ag0.91NbO3 solid solution exhibited a superior Wrec of 5.2 J cm−3 with a high energy storage efficiency (η) of 68.5% at an applied electric field of 290 kV cm−1. Excellent temperature stability of Wrec with a minimal variation of less than 4% from room temperature up to 140 °C was also observed. Meanwhile, the Sm0.03Ag0.91NbO3 ceramic also exhibited an ultrafast discharge speed (∼20 μs) and high discharge energy density (4.2 J cm−3). Ginzburg–Landau–Devonshire (GLD) phenomenology revealed that the significantly stabilized antiferroelectricity and the cation disorder were responsible for the ultrahigh Wrec and η. The extraordinary energy storage performance indicates the SmxAg1−3xNbO3 system a promising candidate for advanced pulsed power capacitors. More importantly, the results show that aliovalent A-site engineering is an effective way to achieve high energy storage density.

Graphical abstract: Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2019
Accepted
09 May 2019
First published
16 May 2019

J. Mater. Chem. A, 2019,7, 14118-14128

Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density

N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou and Y. Wei, J. Mater. Chem. A, 2019, 7, 14118 DOI: 10.1039/C9TA02053E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements