Issue 26, 2019

Dynamic covalent urea bonds and their potential for development of self-healing polymer materials

Abstract

Self-healing polymer materials have drawn rapidly increasing interest over the last decade, and have been studied and used in an ever-increasing range of applications. Herein, we successfully make the covalent urea bond – a pinnacle of stability due to strong resonance effects – dynamic in nature through mediation of zinc salts. The dynamic covalent character of urea in the presence of zinc ions is confirmed through dissociation reaction experiments and quantum chemical calculations of small-molecule model urea compounds. In line with our experiments, the modelling results suggest that the presence of zinc ions speeds up the reaction of urea dissociation by two orders of magnitude via the formation of O-bound Zn complexes. Based on such dynamic covalent urea bonds, we then develop a novel class of self-healing polymer materials with excellent healing efficiencies. Different kinds of self-healing and reprocessable polyurea materials were prepared, with polymer properties that can be easily tuned by varying the degree of crosslinking and the molecular weight of the siloxane precursor. Since different kinds of self-healing polyurea materials could easily be prepared due to the commercial availability of a very wide range of amine and isocyanate monomers, this introduction of self-healing properties is expected to have significant potential in a range of applications, such as coatings, paints, and 3D printing. In addition, this introduces polyureas and other urea-containing polymers as a class of highly stable, yet easily reprocessable plastics, which is highly relevant given the globally desired more sustainable use of plastics.

Graphical abstract: Dynamic covalent urea bonds and their potential for development of self-healing polymer materials

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2019
Accepted
19 May 2019
First published
18 Jun 2019
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2019,7, 15933-15943

Dynamic covalent urea bonds and their potential for development of self-healing polymer materials

Z. Wang, S. Gangarapu, J. Escorihuela, G. Fei, H. Zuilhof and H. Xia, J. Mater. Chem. A, 2019, 7, 15933 DOI: 10.1039/C9TA02054C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements