Issue 26, 2019

Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering

Abstract

Surface passivation is essential to realize high photovoltaic performance for solar cells based on PbS quantum dots (QDs). The recently developed solution-phase ligand-exchange strategy can greatly simplify the device fabrication process compared with the traditional layer by layer method. However, the surface hydroxyl ligand (OH) on the PbS QD surface, a main source of trap states, cannot be avoided in the solution-phase ligand-exchange process and has not been paid attention yet. Meanwhile, the unsatisfactory colloidal stability of current PbS QD ink is also a barrier for its industrial application and waiting for solutions. Here, we demonstrate a multiple-passivation strategy by solution-phase ligand engineering in lead halide exchanged QD ink. It was found that our facile approach can efficiently reduce the trap states of PbS QD ink by suppressing the amount of surface hydroxyl groups. Moreover, ligand engineering can also increase the interaction between QDs and solvent, which endows the QD ink with remarkably improved colloidal stability. As a result, a significant improvement of PCE from 9.99% to 11.18% and device stability were realized. Our results present a new passivation method for solution-phase ligand exchanged QD ink and the improved colloidal stability may help to boost the industrial application of PbS QD based solar cells.

Graphical abstract: Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering

Supplementary files

Article information

Article type
Paper
Submitted
05 Mar 2019
Accepted
09 Jun 2019
First published
13 Jun 2019

J. Mater. Chem. A, 2019,7, 15951-15959

Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering

M. Gu, Y. Wang, F. Yang, K. Lu, Y. Xue, T. Wu, H. Fang, S. Zhou, Y. Zhang, X. Ling, Y. Xu, F. Li, J. Yuan, M. A. Loi, Z. Liu and W. Ma, J. Mater. Chem. A, 2019, 7, 15951 DOI: 10.1039/C9TA02393C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements