Issue 26, 2019

Valorisation of waste to yield recyclable composites of elemental sulfur and lignin

Abstract

Lignin is the second-most abundant biopolymer in nature and remains a severely underutilized waste product of agriculture and paper production. Sulfur is the most underutilized byproduct of petroleum and natural gas processing industries. On their own, both sulfur and lignin exhibit very poor mechanical properties. In the current work, a strategy for preparing more durable composites of sulfur and lignin, LSx, is described. Composites LSx were prepared by reaction of allyl lignin with elemental sulfur, whereby some of the sulfur forms polysulfide crosslinks with lignin to yield a three-dimensional network. Even relatively small quantities (<5 wt%) of the polysulfide-crosslinked lignin network provides up to a 3.4-fold increase in mechanical reinforcement over sulfur alone, as measured by the storage moduli and flexural strength determined from dynamic mechanical analysis (temperature dependence and stress–strain analysis). Notably, LSx composites could be repeatedly remelted and recast after pulverization without loss of mechanical strength. These initial studies suggest potential practical applications of lignin and sulfur waste streams in the ongoing quest towards more sustainable, recyclable structural materials.

Graphical abstract: Valorisation of waste to yield recyclable composites of elemental sulfur and lignin

Supplementary files

Article information

Article type
Paper
Submitted
26 Mar 2019
Accepted
25 May 2019
First published
12 Jun 2019

J. Mater. Chem. A, 2019,7, 15683-15690

Author version available

Valorisation of waste to yield recyclable composites of elemental sulfur and lignin

M. S. Karunarathna, M. K. Lauer, T. Thiounn, R. C. Smith and A. G. Tennyson, J. Mater. Chem. A, 2019, 7, 15683 DOI: 10.1039/C9TA03222C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements