Issue 23, 2019

Enhanced air-stability of Sn-based hybrid perovskites induced by dimethylammonium (DMA): synthesis, characterization, aging and hydrogen photogeneration of the MA1−xDMAxSnBr3 system

Abstract

Polycrystalline powder samples of the novel MA1−xDMAxSnBr3 system have been synthesized and characterized concerning their structural and optical properties. The progressive alloying on the A-site occurs up to x = 0.60 and results in a linear blue-shift of the absorption edge with the DMA content. Mixed phase samples maintain the cubic crystal structure of parent MASnBr3 with a quasi-linear expansion of the cell volume as the DMA content increases. Aging test coupled with X-ray photoelectron spectroscopy indicates that DMASnBr3 is highly tolerant against air-exposure in terms of both crystal structure and optical properties thus representing a first example of highly-stable Sn(II)-containing hybrid perovskite. In addition, thanks to such stability, proof-of-concept and demonstration of hydrogen photogeneration by DMASnBr3 is reported. Evidence of air-stabile Sn(II)-containing perovskites represent a significant further step in the development of tin-containing photovoltaic devices.

Graphical abstract: Enhanced air-stability of Sn-based hybrid perovskites induced by dimethylammonium (DMA): synthesis, characterization, aging and hydrogen photogeneration of the MA1−xDMAxSnBr3 system

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2019
Accepted
07 May 2019
First published
10 May 2019

J. Mater. Chem. C, 2019,7, 7020-7026

Enhanced air-stability of Sn-based hybrid perovskites induced by dimethylammonium (DMA): synthesis, characterization, aging and hydrogen photogeneration of the MA1−xDMAxSnBr3 system

A. Pisanu, A. Speltini, P. Quadrelli, G. Drera, L. Sangaletti and L. Malavasi, J. Mater. Chem. C, 2019, 7, 7020 DOI: 10.1039/C9TC01743G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements