Issue 7, 2021

Towards redox-switchable organocatalysts based on bidentate halogen bond donors

Abstract

Redox-active bidentate halogen bond donors based on halopyridinium groups as halogen-bond donating units were synthesized and their structures were elucidated by X-ray diffraction analyses and DFT calculations. Via reversible twofold reduction, these dicationic species can be transformed to neutral compounds which should be much weaker Lewis acids. The corresponding electrochemical data were obtained, and CV as well as UV-vis and NMR techniques were also used to determine binding constants of these halogen bond donors to halides. While all titrations agree on the relative order of binding strengths (with chloride being bound strongest), there are marked deviations in the overall affinity constants which are discussed. In contrast to earlier azo-bridge analogues, the ethylene-linked variants presented herein do not oxidize halides, and thus the novel halogen bond donors could also be used as Lewis acidic organocatalysts in a halide abstraction benchmark reaction, yielding a performance similar to bis(haloimidazolium)-derived catalysts.

Graphical abstract: Towards redox-switchable organocatalysts based on bidentate halogen bond donors

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2020
Accepted
26 Jan 2021
First published
01 Feb 2021

Phys. Chem. Chem. Phys., 2021,23, 4344-4352

Towards redox-switchable organocatalysts based on bidentate halogen bond donors

E. Engelage, H. Hijazi, M. Gartmann, L.-M. Chamoreau, B. Schöllhorn, S. M. Huber and C. Fave, Phys. Chem. Chem. Phys., 2021, 23, 4344 DOI: 10.1039/D0CP06612E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements