Issue 17, 2020

Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array

Abstract

The synaptic connections between neurons are traditionally determined by correlating the action potentials (APs) of a pre-synaptic neuron and small-amplitude subthreshold potentials of a post-synaptic neuron using invasive intracellular techniques, such as patch clamping. Extracellular recording by a microelectrode array can non-invasively monitor network activities of a large number of neurons, but its reduced sensitivity usually prevents direct measurements of synaptic signals. Here, we demonstrate that a newly developed complementary metal-oxide-semiconductor (CMOS) nanoelectrode array (CNEA) is capable of extracellularly determining direct synaptic connections in dense, multi-layer cultures of dissociated rat neurons. We spatiotemporally correlate action potential signals of hundreds of active neurons, detect small (∼1 pA after averaging) extracellular synaptic signals at the region where pre-synaptic axons and post-synaptic dendrites/somas overlap, and use those signals to map synaptic connections. We use controlled stimulation to assess stimulation-dependent synaptic strengths and to titrate a synaptic blocker (CNQX: IC50 ∼ 1 μM). The new capabilities demonstrated here significantly enhance the utilities of CNEAs in connectome mapping and drug screening applications.

Graphical abstract: Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array

Supplementary files

Article information

Article type
Paper
Submitted
27 May 2020
Accepted
29 Jul 2020
First published
30 Jul 2020

Lab Chip, 2020,20, 3239-3248

Author version available

Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array

J. Abbott, T. Ye, K. Krenek, R. S. Gertner, W. Wu, H. S. Jung, D. Ham and H. Park, Lab Chip, 2020, 20, 3239 DOI: 10.1039/D0LC00553C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements