Issue 1, 2021

Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer

Abstract

Two-dimensional (2D) magnets simultaneously possessing a high transition temperature and large perpendicular magnetic anisotropy are extremely rare, but essential for highly efficient spintronic applications. By using ab initio and global minimization approaches, we for the first time report a completely planar hypercoordinate metalloborophene (α-FeB3) with high stability, unusual stoichiometry and exceptional magnetoelectronic properties. The α-FeB3 monolayer exhibits room-temperature ferromagnetism (Tc = 480 K), whose origin is first revealed by the B-mediated RKKY interaction in the 2D regime. Its perpendicular magnetic anisotropy is almost six times larger than that of the experimentally realized 2D CrI3 and Fe3GeTe2. Moreover, metallic α-FeB3 shows n- and p-type Dirac transport with a high Fermi velocity in both spin channels. Our results not only highlight a promising 2D ferromagnet for advanced spintronics, but also pave the way for exploring novel 2D magnetism in boron-based magnetic allotropes.

Graphical abstract: Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer

Supplementary files

Article information

Article type
Communication
Submitted
13 Oct 2020
Accepted
13 Nov 2020
First published
13 Nov 2020

Nanoscale Horiz., 2021,6, 43-48

Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer

C. Tang, K. (. Ostrikov, S. Sanvito and A. Du, Nanoscale Horiz., 2021, 6, 43 DOI: 10.1039/D0NH00598C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements