Issue 36, 2020

Triazinetriamine-derived porous organic polymer-supported copper nanoparticles (Cu-NPs@TzTa-POP): an efficient catalyst for the synthesis of N-methylated products via CO2 fixation and primary carbamates from alcohols and urea

Abstract

In recent times, carbon dioxide fixation has received much attention for its potential application as an abundant C1 source and a range of important fine chemicals can be manufactured via this fixation. Here, a copper nanoparticle-decorated porous organic polymer-based (Cu-NPs@TzTa-POP) material was prepared by a simple in situ process. The catalyst was characterized by various techniques such as UV-vis spectra, FTIR spectra, HR-TEM, PXRD, N2 adsorption–desorption, TG-DTA, XPS, and AAS analysis. The synthesized heterogeneous catalyst showed excellent activity in an atmospheric carbon dioxide fixation reaction to produce N-methylated products from aromatic/heterocyclic amines in the presence of polymethyl-hydrosiloxane (PMHS) as the reducing agent at 80 °C within 12 h of the reaction. Through this catalytic N-methylation reaction, we obtained 98% yield of the product with turnover frequency ranging from 18 to 42 h−1. The catalyst is also very stable for the formation of primary carbamates from alcohols using the eco-friendly carbonylating agent, urea. Diverse alcohols (such as benzylic alcohols, phenols, heterocyclic alcohols, as well as aliphatic alcohols) showed much acceptance to this catalytic reaction and produced moderate to excellent yields of the respective carbamate products under ambient reaction conditions. Moreover, Cu-NPs@TzTa-POP is effortlessly recyclable and reusable without the extensive loss of active copper metal centres for many catalytic rounds (up to six catalytic rounds were examined).

Graphical abstract: Triazinetriamine-derived porous organic polymer-supported copper nanoparticles (Cu-NPs@TzTa-POP): an efficient catalyst for the synthesis of N-methylated products via CO2 fixation and primary carbamates from alcohols and urea

Supplementary files

Article information

Article type
Paper
Submitted
02 Jun 2020
Accepted
10 Aug 2020
First published
21 Aug 2020

New J. Chem., 2020,44, 15446-15458

Triazinetriamine-derived porous organic polymer-supported copper nanoparticles (Cu-NPs@TzTa-POP): an efficient catalyst for the synthesis of N-methylated products via CO2 fixation and primary carbamates from alcohols and urea

N. Haque, S. Biswas, P. Basu, I. Haque Biswas, R. Khatun, A. Khan and S. M. Islam, New J. Chem., 2020, 44, 15446 DOI: 10.1039/D0NJ02798G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements