Issue 23, 2020

Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots

Abstract

Type 2 diabetes (T2D) and Alzheimer's disease (AD) represent two most prevalent amyloid diseases with a significant global burden. Pathologically, T2D and AD are characterized by the presence of amyloid plaques consisting primarily of toxic human islet amyloid polypeptide (IAPP) and amyloid beta (Aβ). It has been recently revealed that the gut microbiome plays key functions in the pathological progression of neurological disorders through the production of bacterial endotoxins, such as lipopolysaccharide (LPS). In this study, we examined the catalytic effects of LPS on IAPP and Aβ amyloidoses, and further demonstrated their mitigation with zero-dimensional carbon quantum dots (CQDs). Whereas LPS displayed preferred binding with the N-terminus of IAPP and the central hydrophobic core and C-terminus of Aβ, CQDs exhibited propensities for the amyloidogenic and C-terminus regions of IAPP and the N-terminus of Aβ, accordingly. The inhibitory effect of CQDs was verified by an embryonic zebrafish model exposed to the peptides and LPS, where impaired embryonic hatching was rescued and production of reactive oxygen species in the organism was suppressed by the nanomaterial. This study revealed a robust synergy between LPS and amyloid peptides in toxicity induction, and implicated CQDs as a potential therapeutic against the pathologies of T2D and AD.

Graphical abstract: Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2020
Accepted
28 May 2020
First published
29 May 2020

Nanoscale, 2020,12, 12317-12328

Author version available

Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots

K. Koppel, H. Tang, I. Javed, M. Parsa, M. Mortimer, T. P. Davis, S. Lin, A. L. Chaffee, F. Ding and P. C. Ke, Nanoscale, 2020, 12, 12317 DOI: 10.1039/D0NR02710C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements