Issue 63, 2020, Issue in Progress

Semiconductor ZnO based photosensitizer core–shell upconversion nanoparticle heterojunction for photodynamic therapy

Abstract

Photodynamic therapy (PDT) as a noninvasive technique is widely used to treat cancer diseases due to its low side effects. PDT based on upconversion nanoparticles (UCNPs) improved tissue penetration and photo-stability. However, traditional photosensitizers and UCNPs were difficult to incorporate, which limited the circulation of the UCNPs in blood and decreased the PDT effect. Herein, we designed NaErF4@ZnO UCNPs for potential application in thyroid tumor cell PDT. With ZnO coated on NaErF4, the blue (415 nm), green (525 nm/545 nm) and red (661 nm) upconversion luminescence enhanced compared with that of NaErF4 core nanoparticles. Particularly, the generation of UV upconversion emission by NaErF4 sensitized ZnO, which catalyzed H2O and O2 to produce ROS reactive oxygen species (ROS) to induce papillary thyroid carcinoma (PTC) cell lines BHP 5-16. With 1000 μg mL−1 of NaErF4@ZnO UCNPs, the viability of BHP 5-16 cells decreased to about 41% as measured by CCK8 assay with 980 nm NIR irradiation. Moreover, it was confirmed that NaErF4@ZnO UCNPs had low toxicity for BHP 5-16 cells. All these results indicated that NaErF4@ZnO upconversion nanoparticles were an excellent platform for PDT treatment.

Graphical abstract: Semiconductor ZnO based photosensitizer core–shell upconversion nanoparticle heterojunction for photodynamic therapy

Article information

Article type
Paper
Submitted
31 Aug 2020
Accepted
12 Oct 2020
First published
19 Oct 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 38416-38423

Semiconductor ZnO based photosensitizer core–shell upconversion nanoparticle heterojunction for photodynamic therapy

Y. Li, Y. Li, Y. Bai, R. Wang, L. Lin and Y. Sun, RSC Adv., 2020, 10, 38416 DOI: 10.1039/D0RA07466G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements