Issue 14, 2020

Toward strong self-healing polyisoprene elastomers with dynamic ionic crosslinks

Abstract

To compromise high mechanical strength and efficient self-healing capability in an elastomer with dynamic crosslinks, optimization of the molecular structure is crucial in addition to the tuning of the dynamic properties of the crosslinks. Herein, we studied the effects of molecular weight, content of carboxy groups, and neutralization level of ionically crosslinked polyisoprene (PI) elastomers on their morphology, network rearrangement behavior, and self-healing and mechanical properties. In this PI elastomer, nanosized sphere-shaped ionic aggregates are formed by both neutralized and non-neutralized carboxy groups that act as stickers. The number density of the ionic aggregates that act as physical crosslinks increased with increase in the stickers’ concentration, although the size of the ionic aggregates was independent of the molecular weight and the stickers’ concentration. The ionic network was dynamically rearranged by the stickers’ hopping between the ionic aggregates, and the rearrangement was accelerated by decreasing the neutralization level. We found that the 2Rg of the PI must be significantly larger than the average distance between the ionic aggregates to obtain a mechanically strong PI elastomer. We also found that further increase in the molecular weight is effective to enhance the dimensional stability of the elastomer. However, this approach reduced the elastomer's self-healing rate at the same time because the diffusion and randomization of the polymer chains between the damaged faces were reduced. In this work, we clearly demonstrated the principle in the optimization of the molecular structure for the ionically crosslinked PI elastomers to tune the mechanical and autonomous self-healing properties.

Graphical abstract: Toward strong self-healing polyisoprene elastomers with dynamic ionic crosslinks

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2020
Accepted
11 Feb 2020
First published
12 Feb 2020

Soft Matter, 2020,16, 3384-3394

Author version available

Toward strong self-healing polyisoprene elastomers with dynamic ionic crosslinks

Y. Miwa, J. Kurachi, Y. Sugino, T. Udagawa and S. Kutsumizu, Soft Matter, 2020, 16, 3384 DOI: 10.1039/D0SM00058B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements