A metal–organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors†
Abstract
For the emerging potassium-ion energy storage technology, the major challenge is seeking suitable electrode materials with a robust structure and fast kinetics for the reversible insertion/desertion of potassium ions. Here, a pseudocapacitive core–shell heterostructure of titanium oxide/carbon confined into N, P, and S co-doped carbon (TiO2/C@NPSC) is obtained by pyrolyzing a metal–organic framework (MOF) precursor of MIL-125 (Ti) modified by poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) polymer. The distinctive structure of TiO2/C@NPSC can effectively buffer the volume variation of TiO2 nano-grains during the charge/discharge process, increase the electron/charge transfer, provide abundant active sites, and boost the pseudocapacitive-dominated K+-storage. Consequently, the TiO2/C@NPSC anode displays superior cyclability and fast kinetics behavior. Upon integrating it with a high capacitance activated carbon cathode derived from another MOF precursor, the as-built potassium-ion hybrid capacitor achieves a high-energy density of 114 W h kg−1 and a power output of 21 kW kg−1. Moreover, in a wide working potential window of 0–4.2 V, the device also maintains over 91.6% of its initial capacity after 10 000 cycles, showing a superior cycle stability. Our results are conducive to understanding the importance of anode-engineering for designing advanced PIHCs.