Issue 28, 2020

Asymmetric electrode ionomer for low relative humidity operation of anion exchange membrane fuel cells

Abstract

The operation of fuel cells under low relative humidity (RH) conditions gives substantial cost and performance benefits. Nonetheless, it is not currently feasible to operate anion exchange membrane fuel cells (AEMFCs) at low RH conditions because current materials for membrane electrode assembly cannot provide sufficient water for the oxygen reduction reaction. Here we synthesized polyfluorene ionomers with different ammonium concentrations for anode and cathode to control water management. We designed several asymmetric electrodes that enable high performance under low RH conditions via not only conventional backward water diffusion (anode to cathode) but also forward diffusion (cathode to anode). The AEMFCs using optimized asymmetric electrodes exhibited high H2/CO2-free air performance (rated power density of circa 540 mW cm−2 at 90 °C under 75% (anode) and 50% RH (cathode) conditions), which is comparable to those of state-of-the-art AEMFCs under nearly water-saturated conditions. The durability of the AEMFCs is excellent, generating 0.6 A cm−2 for >900 h at 80 °C under 50% RH (cathode) conditions. This study demonstrates that high-performance and durable AEMFCs under low RH and high current generating conditions are possible.

Graphical abstract: Asymmetric electrode ionomer for low relative humidity operation of anion exchange membrane fuel cells

Article information

Article type
Paper
Submitted
10 Jun 2020
Accepted
03 Jul 2020
First published
03 Jul 2020

J. Mater. Chem. A, 2020,8, 14135-14144

Author version available

Asymmetric electrode ionomer for low relative humidity operation of anion exchange membrane fuel cells

D. P. Leonard, S. Maurya, E. J. Park, L. Delfin Manriquez, S. Noh, X. Wang, C. Bae, E. D. Baca, C. Fujimoto and Y. S. Kim, J. Mater. Chem. A, 2020, 8, 14135 DOI: 10.1039/D0TA05807F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements