Issue 39, 2020

Few-layer black phosphorus and boron-doped graphene based heteroelectrocatalyst for enhanced hydrogen evolution

Abstract

Research interest in two-dimensional (2D) materials has grown exponentially across various fields over the past few years. In particular, 2D phosphorene, the single- or few-layered analogue of semiconducting black phosphorus (BP), holds specific promise for advanced catalysis reactions including electrocatalytic hydrogen (H2) production. However, bare phosphorene nanosheets suffer from poor electrical conductivity, limited catalytic sites and instability under ambient conditions. Herein, we integrate ultrathin few-layer BP (FL-BP) nanosheets with boron-doped graphene (BG) to form a novel metal-free 2D/2D heteroelectrocatalyst for the hydrogen evolution reaction (HER) in acidic media. Our newly designed electrocatalyst (FL-BP@BG) shows remarkably enhanced HER activity with a low overpotential of 385.9 mV at 10 mA cm−2, while exhibiting a low charge transfer resistance of only 5.5 Ω in H2SO4 electrolyte. In addition, the FL-BP@BG catalyst shows an outstanding stability over 500 continuous cycles, demonstrating that hybridizing FL-BP with BG is an efficient strategy to construct stable BP based electrocatalyst. This work paves the way for emerging 2D materials for advanced catalysis systems.

Graphical abstract: Few-layer black phosphorus and boron-doped graphene based heteroelectrocatalyst for enhanced hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2020
Accepted
22 Sep 2020
First published
22 Sep 2020

J. Mater. Chem. A, 2020,8, 20446-20452

Few-layer black phosphorus and boron-doped graphene based heteroelectrocatalyst for enhanced hydrogen evolution

S. Suragtkhuu, M. Bat-Erdene, A. S. R. Bati, J. G. Shapter, S. Davaasambuu and M. Batmunkh, J. Mater. Chem. A, 2020, 8, 20446 DOI: 10.1039/D0TA07659G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements