Issue 34, 2020

Diazirine-based photo-crosslinkers for defect free fabrication of solution processed organic light-emitting diodes

Abstract

The fabrication of solution deposited OLEDs is fraught with difficulties, largely due to the interlayer mixing and surface erosion during sequential deposition of the layers. We demonstrate that these problems can be circumvented by using photopolymerizable diazirine-based cross-linker capable of converting soluble organic materials into highly cross-linked insoluble networks. 3-Trifluoromethyl(aryl)diazirines photolyze readily upon the 10–15 min exposure of 365 nm UV irradiation to generate carbenes, which react with polymers or small molecules via C–H bond insertion producing highly cross-linked materials. This photo-generated cross-linking does not require any catalyst, initiator or short-wavelength UV light and is performed at room temperature, releasing molecular nitrogen as the only byproduct. To show the cross-linked polymer layers do not display inter-layer mixing, we deposited red-emitting regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) over cross-linked (10% cross-linker) blue emitting dioctyl polyfluorene (PFO) layer. The overlaid layers showed clear and well-defined boundary with no interlayer mixing. The surface morphology of the solution deposited layers was investigated by AFM to show that the cross-linked layers exhibited significant decrease in surface roughness. This is also shown on the example of the hole transporting material 4,4′-bis[N-(1-naphthyl)-N-phenylamino]-biphenyl (NPB) which displayed roughness average to decrease from 6.4 nm to 1.0 nm. The effect of decreased surface roughness on the performance of phosphorescent OLEDs was investigated by fabricating devices with configuration of ITO/PEDOT:PSS/NPB:(0%/5%/10%) cross-linker/MCP:6% Ir(mppy)3/TPBI/CsF/Al. Following the diazirine-mediated cross-linking, the OLEDs displayed a decrease in turn-on voltage from 3.8 V to 3.0 V along with a six-fold enhancement of external quantum efficiency (EQEmax) from 1.1% to 6.8% and maximum luminous efficiency increase from 3.8 cd A−1 to 22.9 cd A−1. These results demonstrate that the simple diazirine mediated photo-cross-linking using mild conditions compatible with organic layers is a promising strategy for improving the performance of the solution-processed OLEDs.

Graphical abstract: Diazirine-based photo-crosslinkers for defect free fabrication of solution processed organic light-emitting diodes

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2020
Accepted
05 Aug 2020
First published
05 Aug 2020

J. Mater. Chem. C, 2020,8, 11988-11996

Author version available

Diazirine-based photo-crosslinkers for defect free fabrication of solution processed organic light-emitting diodes

K. Dey, S. R. Chowdhury, E. Dykstra, A. Koronatov, H. P. Lu, R. Shinar, J. Shinar and P. Anzenbacher, J. Mater. Chem. C, 2020, 8, 11988 DOI: 10.1039/D0TC02317E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements