Issue 32, 2021

Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal

Abstract

In this paper, we designed a three-band narrowband perfect absorber based on bulk Dirac semi-metallic (BDS) metamaterials. The absorber consists of a hollow Dirac semi-metallic layer above, a gold layer below and a photonic crystal slab (PCS) in the middle. The study found that the terahertz wave absorber achieved three perfect absorption rates of more than 95% in the range of 1 to 2.4 THz. The minimum bandwidth (FWHM) is 0.02 THz, and the maximum quality factor (Q) is 106. A reasonable explanation of high absorption can be obtained by impedance matching, electric dipole and other principles. The absorption spectra of the two polarizations show different responses at different incident angles. In addition, we also obtained the influence of the structural parameters of the upper layer of the metamaterial on the absorption performance. We defined the refractive index sensitivity (S) with a maximum sensitivity of 0.1525 THz RIU−1 and a highest quality factor (FOM) of 4.26 in the refractive index range of 1 to 1.8. The maximum adjustable range is 0.06 THz in the Fermi energy range of 60 to 140 meV. Because of its excellent characteristics, our absorber will have good development prospects in the fields of optical switching, biochemical imaging, and space detection.

Graphical abstract: Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal

Article information

Article type
Paper
Submitted
29 Mar 2021
Accepted
16 Jul 2021
First published
17 Jul 2021

Phys. Chem. Chem. Phys., 2021,23, 17374-17381

Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal

Z. Li, Z. Yi, T. Liu, L. Liu, X. Chen, F. Zheng, J. Zhang, H. Li, P. Wu and P. Yan, Phys. Chem. Chem. Phys., 2021, 23, 17374 DOI: 10.1039/D1CP01375K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements