Issue 13, 2022

Chemical pressure in functional materials

Abstract

Chemical pressure, a strange but familiar concept, is a lattice internal force caused by lattice strain with chemical modifications and arouses great interest due to its diversity and efficiency to synthesize new compounds and tune functional materials. Different from physical pressure loaded by an external force that is positive, chemical pressure can be either positive or negative (contract a lattice or expand it), often through flexible and mild chemical synthesis strategies, which are particularly important as a degree of freedom to manipulate material behaviors. In this tutorial review, we summarize the features of chemical pressure as a methodology and demonstrate its role in synthesizing and discovering some typical magnetically, electrically, and thermally responsive functional materials. The measure of chemical pressure using experimental lattice strain and elastic modulus was proposed, which can be used for quantitative descriptions of the correlation between lattice distortion and properties. From a lattice strain point of view, we classify chemical pressure into different categories: (i) chemical substitution, (ii) chemical intercalation/de-intercalation, (iii) size effect, and (iv) interface constraint, etc. Chemical pressure affects chemical bonding and rationalizes the crystal structure by modifying the electronic structure of solids, regulating the lattice symmetry, local structure, phonon structure effects etc., emerging as a general and effective method for synthesizing new compounds and tuning functional materials.

Graphical abstract: Chemical pressure in functional materials

Article information

Article type
Tutorial Review
Submitted
11 Jun 2021
First published
23 Jun 2022

Chem. Soc. Rev., 2022,51, 5351-5364

Chemical pressure in functional materials

K. Lin, Q. Li, R. Yu, J. Chen, J. P. Attfield and X. Xing, Chem. Soc. Rev., 2022, 51, 5351 DOI: 10.1039/D1CS00563D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements