Issue 35, 2021

Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction

Abstract

As an emerging family of two-dimensional (2D) materials, transition metal borides (MBenes) have attracted increasing interest due to their potential applications in electrochemistry, especially electrocatalysis. In this work, we addressed six MB (M = Sc, Ti, V, Cr, Mo and W) monolayers as catalysts to explore their electrocatalytic activity for the nitrogen reduction reaction (NRR) using first-principles calculations. Our results demonstrated that N2 molecules could be strongly adsorbed on these MB monolayers to provoke the NRR process. Furthermore, we examined five possible catalytic reaction pathways of the NRR, i.e., the alternating, distal, and three mixed pathways, on the MB monolayers with N2 adsorption (both side-on and end-on) configurations, and screened out three highly efficient NRR catalysts: VB, CrB, and MoB monolayers with the onset potential of −0.396, −0.277, and −0.403 V, respectively. By comparison of the limiting potentials, the most effective reaction pathways of the NRR were ascertained to be the alternating pathway on the VB monolayer with the end-on configuration and the mixed I pathway on the CrB monolayer with the end-on configuration and on the MoB monolayer with the side-on configuration. Our work sheds light on the electrocatalytic mechanisms of the NRR on 2D MBenes, and provides a theoretical foundation for developing highly efficient MBene electrocatalysts for the NRR.

Graphical abstract: Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2021
Accepted
04 Aug 2021
First published
04 Aug 2021

Nanoscale, 2021,13, 15002-15009

Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction

Y. Li, L. Li, R. Huang and Y. Wen, Nanoscale, 2021, 13, 15002 DOI: 10.1039/D1NR04652G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements