Issue 12, 2021

Suppressing aggregation induced quenching in anthracene based conjugated polymers

Abstract

Anthracene is a highly valuable building block for luminescent conjugated polymers, particularly when a large singlet–triplet energy gap (ΔEST) is desired. Unfortunately, the extended π system of anthracene imparts a strong tendency for polymer aggregation, resulting in detrimental effects on its solid state photophysics. A large decrease in photoluminescence quantum yield (PLQY, ΦF) on going from solution to the solid state is especially common, represented in terms of a low ΦR (ΦR = ΦF film/ΦF sol.). Significant and undesirable red-shifting of fluorescence in the solid state is also typical due to processes such as excimer formation. In this work a series of alkylene-encapsulated conjugated anthracene polymers is developed to overcome these challenging problems. We demonstrate a promising material which displays a good solid state PLQY that is effectively unchanged compared to solution measurements (ΦR ∼ 1, ΦF film ∼ 40%), alongside an identical PL 0–0 transition wavelength in solution and thin film. Such a direct transfer of luminescence properties from solution to the solid state is remarkable for a conjugated polymer and completely unprecedented for one based on anthracene.

Graphical abstract: Suppressing aggregation induced quenching in anthracene based conjugated polymers

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2021
Accepted
16 Feb 2021
First published
03 Mar 2021
This article is Open Access
Creative Commons BY-NC license

Polym. Chem., 2021,12, 1830-1836

Suppressing aggregation induced quenching in anthracene based conjugated polymers

D. G. Congrave, B. H. Drummond, V. Gray, A. D. Bond, A. Rao, R. H. Friend and H. Bronstein, Polym. Chem., 2021, 12, 1830 DOI: 10.1039/D1PY00118C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements