Issue 43, 2021, Issue in Progress

Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process

Abstract

Conversion of lignocellulosic residue to bioenergy and biofuel is a promising platform for global sustainability. Fractionation is an initial step for isolating lignocellulosic components for subsequent valorization. The aim of this research is to develop the solvothermal fractionation of sugarcane bagasse to produce high purity lignin. The physio-chemical structure of isolated lignin from this process was determined. In this study, a central composite design-based response surface methodology (RSM) was used to optimize an acid promoter for isolating lignin from sugarcane bagasse using a solvothermal fractionation process. The reaction was carried out with sulfuric acid, at a concentration of 0.01–0.02 M and a reaction temperature of 180–200 °C for 30–90 min. The optimal conditions for the experiment were obtained at the acid concentration of 0.02 M with a temperature of 200 °C for 90 min in methyl isobutyl ketone (MIBK)/methanol/water (35% : 25% : 40% v/v%). The results showed that 88% of lignin removal was done in the solid phase, while 87% of lignin recovery was conducted in the organic phase. Furthermore, the changes in the physico-chemical characteristics of solid residue and lignin recovery were analyzed using various techniques. GPC analysis of recovered lignin from the organic fraction showed a lower Mw (1374 g mol−1) and polydispersity index (1.75) compared to commercial organosolv lignin. The major lignin degradation temperature of commercial organosolv lignin was estimated to be 410 °C, whereas BGL showed two main degradations at 291 °C and 437 °C, which could point to potential relationships with the degradation of β-O-4 cross-links. The results indicated that recovered lignin was mostly cross-linked by β-O-4 cross-links. In addition, Py-GC/MS and 2D HSQC NMR gave more information regarding the compositional and structural features of recovered lignin. The development of the sulfuric acid catalyzed solvothermal process in this study provides efficient extraction of high-value organosolv lignin from sugarcane bagasse and the production of recovered lignin in the organic phase with low contamination from other contents. The lignin characteristic data can contribute to the development of lignin valorization in value-added applications.

Graphical abstract: Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2021
Accepted
26 Jul 2021
First published
05 Aug 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 26773-26784

Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process

S. Imman, P. Khongchamnan, W. Wanmolee, N. Laosiripojana, T. Kreetachat, C. Sakulthaew, C. Chokejaroenrat and N. Suriyachai, RSC Adv., 2021, 11, 26773 DOI: 10.1039/D1RA03237B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements