Issue 11, 2021

Binding and separation of CO2, SO2 and C2H2 in homo- and hetero-metallic metal–organic framework materials

Abstract

We report the adsorption of C2H2, CO2 and SO2 in a new, ultra-stable Cr(III)-based MOF, MFM-300(Cr), {[Cr2(OH)2(L)], H4L = biphenyl-3,3′,5,5′-tetracarboxylic acid}. MFM-300(Cr) shows uptakes of 7.37, 7.73 and 8.59 mmol g−1 for CO2, C2H2 and SO2, respectively, at 273 K, 1.0 bar, and shows a higher selectivity for SO2/CO2 compared with the Al(III) analogue MFM-300(Al) (selectivity of 79 vs. 45). In order to monitor the effects of changing metal centre on gas uptake and to integrate the properties of the homometallic analogues, the mixed metal MFM-300(Al0.67Cr0.33), [Al1.34Cr0.66(OH)2(L)] has been synthesised. In situ synchrotron micro-FTIR spectroscopy has identified distinct CO2 binding environments on Al–O(H)–Al, Cr–O(H)–Cr and Al–O(H)–Cr bridges in MFM-300(Al0.67Cr0.33), and we have determined the binding domains for these gases by in situ synchrotron X-ray diffraction in both MFM-300(Cr) and MFM-300(Al0.67Cr0.33). The capability of these materials for gas separation has been confirmed by dynamic breakthrough experiments. The incorporation of Al(III) and Cr(III) within the same framework allows tuning of the host–guest and guest–guest interactions within these functional porous materials.

Graphical abstract: Binding and separation of CO2, SO2 and C2H2 in homo- and hetero-metallic metal–organic framework materials

Supplementary files

Article information

Article type
Paper
Submitted
24 Jan 2021
Accepted
15 Feb 2021
First published
15 Feb 2021
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2021,9, 7190-7197

Binding and separation of CO2, SO2 and C2H2 in homo- and hetero-metallic metal–organic framework materials

L. Briggs, R. Newby, X. Han, C. G. Morris, M. Savage, C. P. Krap, T. L. Easun, M. D. Frogley, G. Cinque, C. A. Murray, C. C. Tang, J. Sun, S. Yang and M. Schröder, J. Mater. Chem. A, 2021, 9, 7190 DOI: 10.1039/D1TA00687H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements