Issue 21, 2022

Hedgehog-inspired immunomagnetic beads for high-efficient capture and release of exosomes

Abstract

Exosomes are small extracellular vesicles secreted by cells. They play an important regulatory role in the physiological and pathological processes of the body, and participate in the occurrence and development of many diseases. Although tumor-derived exosomes have been used as biomarkers for cancer detection, it is still a huge challenge to efficiently capture and release functionally complete exosomes. In our research, inspired by the structure of hedgehog burrs, we proposed immunomagnetic hedgehog particles (IMHPs) to efficiently capture and release exosomes. In general, after the assembly of one-dimensional nanostructural TiO2 bundles into hedgehog TiO2 particles with 356.12 ± 38.32 nm spikes, magnetic responsive nanoparticles (Fe3O4, ∼20 nm), an antifouling polyethylene glycol (PEG) component containing a redox responsive disulfide linkage and anti-CD63 antibody were introduced stepwise to functionalize hedgehog particles and generate IMHPs (1.23 ± 0.18 μm). Due to their unique topological structures, exosomes were positively selected with an exosomal marker (CD63) and negatively selected by depleting environmental pollutants (protein precipitates, cell debris) with the nano-spikes. These prepared IMHPs were successfully applied to capture exosomes from MCF-7 cells, with a capture efficiency of 91.70%. Then, tris (2-carboxyethyl) phosphine hydrochloride (TCEP) was used to reduce the disulfide bond to release exosomes, and the release efficiency was up to 82.45%. The exosomes that experienced successive immunomagnetic separation and release well maintained their structural integrity and good bioactivity to promote MCF-7 cell migration, as compared with those exosomes separated by the classic ultracentrifugation approach. These results also indicated that IMHPs would have broad prospects in biomedicine and clinical applications, where highly efficient and non-destructive separation of bio-substances (cells, extracellular vesicles, etc.) is critically required.

Graphical abstract: Hedgehog-inspired immunomagnetic beads for high-efficient capture and release of exosomes

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2022
Accepted
22 Apr 2022
First published
22 Apr 2022

J. Mater. Chem. B, 2022,10, 4059-4069

Hedgehog-inspired immunomagnetic beads for high-efficient capture and release of exosomes

J. Cheng, N. Zhu, Y. Zhang, Y. Yu, K. Kang, Q. Yi and Y. Wu, J. Mater. Chem. B, 2022, 10, 4059 DOI: 10.1039/D2TB00226D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements