Volume 42, 1966

Possible mechanism for the spontaneous rupture of thin, free liquid films

Abstract

The stability of a free, thin liquid film against small, spontaneous thickness fluctuations is explored. The film is unstable with respect to fluctuations with wavelengths larger than a critical wavelength Λc=[–2π2γ/(d2V/dh2)]½, where γ is the interfacial tension and V(h) the free energy of interaction as a function of the film thickness h. V(h) may include van der Waals attraction and double-layer repulsion. The kinetics of the growing fluctuations is obtained by assuming a laminar liquid flow between rigid film surfaces at a constant viscosity. There are stable fluctuation-modes, which grow exponentially with time, each with a characteristic time constant τ, and modes with certain wavelengths grow faster than all others (τ=τm). If the van der Waals forces predominate Λc and τm are given by eqn. (4.2) and (4.3) respectively. For A= 10–14-10–12erg, γ= 30 dyne/cm and h= 100–1000 Å, Λc ranges from 0.6–600 µ and τm from a fraction of a second to several hours. The life-time and critical thickness hc of an unstable film are also calculated; they depend on the time constant τm and on the time of draining. The critical thickness is calculated for microscopic, circular films and compared with measurements of Scheludko and Exerowa. For water and aniline films, the calculated hc are 410 and 750 Å respectively, whereas the experimental values are 270 and 410 Å.

Article information

Article type
Paper

Discuss. Faraday Soc., 1966,42, 23-33

Possible mechanism for the spontaneous rupture of thin, free liquid films

A. Vrij, Discuss. Faraday Soc., 1966, 42, 23 DOI: 10.1039/DF9664200023

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements