Issue 14, 1994

µ-Oxo-bridged diiron(III) complexes and H2O2: monooxygenase- and catalase-like activities

Abstract

The µ-oxo-bridged diiron(III) complex [Fe2O(bipy)4(OH2)2][ClO4]41(bipy = 2,2′-bipyridine) was found to exhibit monooxygenase-like activity, using H2O2 as the oxidant. The system oxidizes alkanes to alcohols and ketones quite efficiently (46 mmol of cyclohexanol + cyclohexanone per rnmol complex in 10 min). In the case of adamantane, selectivity for the tertiary hydrogen was indicated by a high normalized C3:C2 ratio of 9:1. The same reaction yields and rates were obtained whether argon or dioxygen was bubbled through the solution. Dimethyl sulfide was transformed into dimethyl sulfoxide and dimethylsulfone and benzene into phenol. These results exclude O2 as a key reactant in this system and suggest that high-valent oxoiron intermediates and hydroxyl radicals are the active species. The potential of this system is strongly limited by the instability of the catalyst and by its strong catalase-like activity. Complex 1 is actually a very efficient catalyst for hydrogen peroxide dismutation, thus transforming 50% of the excess of H2O2 into O2 in 10 min.

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1994, 2081-2084

µ-Oxo-bridged diiron(III) complexes and H2O2: monooxygenase- and catalase-like activities

S. Ménage, J. M. Vincent, C. Lambeaux and M. Fontecave, J. Chem. Soc., Dalton Trans., 1994, 2081 DOI: 10.1039/DT9940002081

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements