Issue 19, 1992

Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite

Abstract

Nanosized ZSM5 zeolites with microcrystal dimensions in the 20–120 nm range have been characterized by means of IR spectroscopy and HRTEM microscopy. The vibrational spectrum of the OH groups on the external and internal surfaces of H-ZSM5 and Na-ZSM5 samples of different crystallite dimensions has been investigated. For the sake of comparison the spectra of silicalite samples containing different concentrations of sodium and aluminium are also shown. For this purpose high-purity silicalite samples were prepared following a novel synthesis route.

Carbon monoxide (a very weak Lewis base) was used to probe the acidity present on the external and internal surfaces of the zeolites through formation of 1 : 1 adducts with silanols (both internal and external), Brønsted-acid groups (both framework and extraframework), Na+ ions, and Lewis Al3+ centres (in extraframework and framework positions). The IR-active CO stretching modes of the complexes are shifted to higher wavenumber with respect to the free molecule; the positive shift can be used to estimate the acid strength. CO that was physically adsorbed in the zeolite channels has also been investigated.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans., 1992,88, 2959-2969

Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite

A. Zecchina, S. Bordiga, G. Spoto, D. Scarano, G. Petrini, G. Leofanti, M. Padovan and C. O. Areàn, J. Chem. Soc., Faraday Trans., 1992, 88, 2959 DOI: 10.1039/FT9928802959

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements