Issue 5, 2002

Characterization of humic-rich hydrocolloids and their metal species by means of competing ligand and metal exchange—an on-site approach

Abstract

An improved on-site characterization of humic-rich hydrocolloids and their metal species in aquatic environments was the goal of the present approach. Both ligand exchange with extreme chelators (diethylenetetraaminepentaacetic acid (DTPA), ethylendiaminetetraacetic acid (EDTA)) and metal exchange with strongly competitive cations (Cu(II)) were used on-site to characterize the conditional stability and availability of colloidal metal species in a humic-rich German bogwater lake (Venner Moor, Münsterland). A mobile time-controlled tangential-flow ultrafiltration technique (cut-off: 1 kDa) was applied to differentiate operationally between colloidal metal species and free metal ions, respectively. DOC (dissolved organic carbon) and metal determinations were carried out off-site using a home-built carbon analyzer and conventional ICP-OES (inductively-coupled plasma-optical emission spectrometry), respectively. From the metal exchange equilibria obtained on-site the kinetic and thermodynamic stability of the original metal species (Fe, Mn, Zn) could be characterized. Conditional exchange constants Kex obtained from aquatic metal species and competitive Cu(II) ions follow the order Mn > Zn >> Fe. Obviously, Mn and Zn bound to humic-rich hydrocolloids are very strongly competed by Cu(II) ions, in contrast to Fe which is scarcely exchangeable. The exchange of aquatic metal species (e.g. Fe) by DTPA/EDTA exhibited relatively slow kinetics but rather high metal availabilities, in contrast to their Cu(II) exchange.

Article information

Article type
Paper
Submitted
26 Mar 2002
Accepted
28 Jun 2002
First published
05 Aug 2002

J. Environ. Monit., 2002,4, 799-802

Characterization of humic-rich hydrocolloids and their metal species by means of competing ligand and metal exchange—an on-site approach

J. C. Rocha, A. H. Rosa, J. V. D. Bergh and P. Burba, J. Environ. Monit., 2002, 4, 799 DOI: 10.1039/B203051A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements