Issue 4, 2003

Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei

Abstract

The potential for performing cellulase-catalyzed reactions on cellulose dissolved in 1-butyl-3-methylimidazolium chloride ([bmim]Cl) has been investigated. We have carried out a systematic study on the irreversible solvent and ionic strength-induced inactivation and unfolding of cellulase from Trichoderma reesei (E.C. #3.2.1.4). Experiments, varying both cellulase and IL solvent concentrations, have indicated that [bmim]Cl, and several other ILs, as well as dimethylacetamide–LiCl (a well-known solvent system for cellulose), inactivate cellulase under these conditions. Despite cellulase inactivity, results obtained from this study led to valuable insights into the requirements necessary for enzyme activity in IL systems. Enzyme stability was determined during urea, NaCl, and [bmim]Cl-induced denaturation observed through fluorescence spectroscopy. Protein stability of a PEG-supported cellulase in [bmim]Cl solution was investigated and increased stability/activity of the PEG-supported cellulase in both the [bmim]Cl and citrate buffer solutions were detected.

Graphical abstract: Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei

Article information

Article type
Paper
Submitted
06 Mar 2003
First published
30 Jun 2003

Green Chem., 2003,5, 443-447

Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei

M. B. Turner, S. K. Spear, J. G. Huddleston, J. D. Holbrey and R. D. Rogers, Green Chem., 2003, 5, 443 DOI: 10.1039/B302570E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements