Issue 14, 2008

Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes

Abstract

The role of transport and re-adsorption processes on the oxygen reduction reaction (ORR), and in particular on its selectivity was studied using nanostructured model electrodes consisting of arrays of Pt nanostructures of well-defined size and separation on a planar glassy carbon (GC) substrate. The electrochemical measurements were performed under controlled transport conditions in a double-disk electrode thin-layer flow-cell configuration; the model electrodes were fabricated by colloidal lithography techniques, yielding Pt nanostructures of well defined and controlled size and density (diameter: 140 or 85 nm, height: 20 or 10 nm, separation: from 1–2 to more than 10 diameters). The nanostructured model electrodes were characterized by scanning electron microscopy and electrochemical probing of the active surface area (via the hydrogen adsorption charge). The electrocatalytic measurements revealed a pronounced variation of the hydrogen peroxide yield, which increases by up to two orders of magnitude with increasing separation and decreasing size of the Pt nanostructures. Similar, though less pronounced effects were observed upon varying the electrolyte flow and thus the mass transport characteristics. These effects are discussed in a reaction model which includes (i) direct reduction to H2O on the Pt surface and (ii) additional H2O2 formation and desorption on both Pt and carbon surfaces and subsequent partial re-adsorption and further reduction of the H2O2 molecules on the Pt surface.

Graphical abstract: Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2007
Accepted
15 Feb 2008
First published
26 Feb 2008

Phys. Chem. Chem. Phys., 2008,10, 1931-1943

Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes

A. Schneider, L. Colmenares, Y. E. Seidel, Z. Jusys, B. Wickman, B. Kasemo and R. J. Behm, Phys. Chem. Chem. Phys., 2008, 10, 1931 DOI: 10.1039/B719775F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements