Issue 5, 2010

Mono-substituted Keggin, Wells-Dawson and {P2W21}-type polyoxometalates without positional disorder

Abstract

Three new phenyltin-substituted polyoxometalates, ((CH3)2NH2)4[Sn(C6H5)PW11O39] (1), K7[Sn(C6H5)P2W17O61] (2), and ((CH3)2NH2)6K[Sn(C6H5)(H2O)P2W20O70(H2O)2] (3), have been synthesized and characterized by single crystal X-ray diffraction, 31P and 1H NMR, and FT-IR spectroscopy. Significantly, the mono-substituted phenyltin group in all three complexes is not positionally disordered. The Sn(C6H5) group is unambiguously determined and refined anisotropically with full occupancy, a result that is very unusual for mono-substituted polyoxometalates, and in particular polytungstates. Three factors account for these disorder-free mono-phenyltin-substituted polyanion structures: the steric bulk and rigidity of the phenyl group, hydrogen bonding and cation–π interactions between the phenyl ring and countercations. These results demonstrate the ability of a phenyl group to remove the crystallographically imposed positional disorder typically seen in mono-substituted polyoxometalates, an attribute that usually renders structural and structure-related reactivity studies of this large class of polyoxometalates quite difficult.

Graphical abstract: Mono-substituted Keggin, Wells-Dawson and {P2W21}-type polyoxometalates without positional disorder

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2009
Accepted
12 Nov 2009
First published
08 Jan 2010

CrystEngComm, 2010,12, 1518-1525

Mono-substituted Keggin, Wells-Dawson and {P2W21}-type polyoxometalates without positional disorder

R. Cao, K. P. O'Halloran, D. A. Hillesheim, K. I. Hardcastle and C. L. Hill, CrystEngComm, 2010, 12, 1518 DOI: 10.1039/B919934A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements